Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 26(12 Suppl 2): S3-S16, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437669

RESUMO

Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.


Assuntos
Glioblastoma , Neurologia , Radioterapia (Especialidade) , Humanos , Glioblastoma/radioterapia , Quimiorradioterapia
2.
Radiother Oncol ; 188: 109873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640160

RESUMO

BACKGROUND AND PURPOSE: Survival in glioblastoma might be extended by escalating the radiotherapy dose to treatment-resistant tumour and adapting to tumour changes. Diffusion-weighted imaging (DWI) on MRI-linear accelerators (MR-Linacs) could be used to identify a dose escalation target, but its prognostic value must be demonstrated. The purpose of this study was to determine whether MR-Linac DWI can assess treatment response in glioblastoma and whether changes in DWI show greater prognostic value than changes in the contrast-enhancing gross tumour volume (GTV). MATERIALS AND METHODS: Seventy-five patients with glioblastoma were treated with chemoradiotherapy, of which 32 were treated on a 1.5 T MRI-linear accelerator (MR-Linac). Patients were imaged with simulation MRI scanners (MR-sim) at treatment planning and weeks 2, 4, and 10 after treatment start. Twenty-eight patients had additional MR-Linac DWI sequences. Cox modelling was used to evaluate the correlation of overall and progression-free survival (OS and PFS) with clinical variables and volumetric changes in the GTV and low-ADC regions (ADC < 1.25 µm2/ms within GTV). RESULTS: In total, 479 MR-Linac DWI and 289 MR-sim DWI datasets were analyzed. MR-Linac low-ADC changes between weeks 2 and 5 inclusive were prognostic for OS (hazard ratio lower limits ≥ 1.2, p-values ≤ 0.02). MR-sim low-ADC changes showed greater correlation with OS and PFS than GTV changes (e.g., OS hazard ratio at week 2 was 3.4 (p <0.001) for low-ADC versus 2.0 (p = 0.022) for GTV). CONCLUSION: MR-Linac DWI can measure low-ADC tumour volumes that correlate with OS and PFS better than contrast-enhancing GTV. Low-ADC regions could serve as dose escalation targets.

3.
Radiother Oncol ; 186: 109803, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437609

RESUMO

BACKGROUND AND PURPOSE: The apparent diffusion coefficient (ADC), a potential imaging biomarker for radiotherapy response, needs to be reproducible before translation into clinical use. The aim of this study was to evaluate the multi-centre delineation- and calculation-related ADC variation and give recommendations to minimize it. MATERIALS AND METHODS: Nine centres received identical diffusion-weighted and anatomical magnetic resonance images of different cancerous tumours (adrenal gland, pelvic oligo metastasis, pancreas, and prostate). All centres delineated the gross tumour volume (GTV), clinical target volume (CTV), and viable tumour volume (VTV), and calculated ADCs using both their local calculation methods and each of the following calculation conditions: b-values 0-500 vs. 150-500 s/mm2, region-of-interest (ROI)-based vs. voxel-based calculation, and mean vs. median. ADC variation was assessed using the mean coefficient of variation across delineations (CVD) and calculation methods (CVC). Absolute ADC differences between calculation conditions were evaluated using Friedman's test. Recommendations for ADC calculation were formulated based on observations and discussions within the Elekta MRI-linac consortium image analysis working group. RESULTS: The median (range) CVD and CVC were 0.06 (0.02-0.32) and 0.17 (0.08-0.26), respectively. The ADC estimates differed 18% between b-value sets and 4% between ROI/voxel-based calculation (p-values < 0.01). No significant difference was observed between mean and median (p = 0.64). Aligning calculation conditions between centres reduced CVC to 0.04 (0.01-0.16). CVD was comparable between ROI types. CONCLUSION: Overall, calculation methods had a larger impact on ADC reproducibility compared to delineation. Based on the results, significant sources of variation were identified, which should be considered when initiating new studies, in particular multi-centre investigations.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Masculino , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
4.
BMC Bioinformatics ; 24(1): 200, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193950

RESUMO

BACKGROUND: Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. RESULTS: We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. CONCLUSION: Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.


Assuntos
Cisteína , Aprendizado Profundo , Animais , Proteínas/química , Peptídeos/química , Algoritmos , Mamíferos
5.
Front Oncol ; 12: 1060098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518316

RESUMO

Purpose: This study reports the workflow and initial clinical experience of high grade glioma (HGG) radiotherapy on the 1.5 T MR-Linac (MRL), with a focus on the temporal variations of the tumor and feasibility of multi-parametric image (mpMRI) acquisition during routine treatment workflow. Materials and methods: Ten HGG patients treated with radiation within the first year of the MRL's clinical operation, between October 2019 and August 2020, were identified from a prospective database. Workflow timings were recorded and online adaptive plans were generated using the Adapt-To-Position (ATP) workflow. Temporal variation within the FLAIR hyperintense region (FHR) was assessed by the relative FHR volumes (n = 281 contours) and migration distances (maximum linear displacement of the volume). Research mpMRIs were acquired on the MRL during radiation and changes in selected functional parameters were investigated within the FHR. Results: All patients completed radiotherapy to a median dose of 60 Gy (range, 54-60 Gy) in 30 fractions (range, 30-33), receiving a total of 287 fractions on the MRL. The mean in-room time per fraction with or without post-beam research imaging was 42.9 minutes (range, 25.0-69.0 minutes) and 37.3 minutes (range, 24.0-51.0 minutes), respectively. Three patients (30%) required re-planning between fractions 9 to 12 due to progression of tumor and/or edema identified on daily MRL imaging. At the 10, 20, and 30-day post-first fraction time points 3, 3, and 4 patients, respectively, had a FHR volume that changed by at least 20% relative to the first fraction. Research mpMRIs were successfully acquired on the MRL. The median apparent diffusion coefficient (ADC) within the FHR and the volumes of FLAIR were significantly correlated when data from all patients and time points were pooled (R=0.68, p<.001). Conclusion: We report the first clinical series of HGG patients treated with radiotherapy on the MRL. The ATP workflow and treatment times were clinically acceptable, and daily online MRL imaging triggered adaptive re-planning for selected patients. Acquisition of mpMRIs was feasible on the MRL during routine treatment workflow. Prospective clinical outcomes data is anticipated from the ongoing UNITED phase 2 trial to further refine the role of MR-guided adaptive radiotherapy.

6.
Mov Disord ; 37(10): 2134-2139, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089809

RESUMO

BACKGROUND: GBA1 mutation is the most common genetic risk factor for Parkinson's disease (PD). Replacement of the lysosomal enzyme glucocerebrosidase (GCase) slows neurodegeneration in PD models and may be a promising disease-modifying therapy in patients with PD. However, recombinant GCase has limited penetration through the blood-brain barrier (BBB). Microbubble-mediated magnetic resonance-guided focused ultrasound (MRgFUS) can reversibly disrupt the BBB for drug delivery. METHODS: This open-label phase I study investigated the safety and feasibility of MRgFUS putaminal delivery of intravenous GCase at escalating doses (15 to 30 to 60 IU/kg) every 2 weeks in four patients with PD with GBA1 mutations. RESULTS: BBB permeability was achieved and restored in all patients as quantified by dynamic contrast-enhanced magnetic resonance imaging after treatment. There were no serious adverse events. Two patients developed transient dyskinesia after treatment. Blinded Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor scores off medication decreased by 12% at 6 months from baseline (from 26 ± 9 to 22 ± 6). Standardized uptake value ratio on fluorodeoxyglucose positron emission tomography imaging in the treated putamen reduced from 1.66 ± 0.14 to 1.27 ± 0.08. CONCLUSIONS: Results from this study demonstrate the safety and feasibility of MRgFUS GCase delivery in PD and support further investigation of this approach. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Glucosilceramidase , Doença de Parkinson , Glucosilceramidase/genética , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Mutação , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico
7.
Med Phys ; 49(11): 7071-7084, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35842918

RESUMO

PURPOSE: Target localization, for stereotactic radiosurgery (SRS) treatment with Gamma Knife, has become increasingly reliant on the co-registration between the planning MRI and the stereotactic cone-beam computed tomography (CBCT). Validating image registration between modalities would be particularly beneficial when considering the emergence of novel functional and metabolic MRI pulse sequences for target delineation. This study aimed to develop a phantom-based methodology to quantitatively compare the co-registration accuracy of the standard clinical imaging protocol to a representative MRI sequence that was likely to fail co-registration. The comparative methodology presented in this study may serve as a useful tool to evaluate the clinical translatability of novel MRI sequences. METHODS: A realistic human skull phantom with fiducial marker columns was designed and manufactured to fit into a typical MRI head coil and the Gamma Knife patient positioning system. A series of "optimized" 3D MRI sequences-T1 -weighted Dixon, T1 -weighted fast field echo (FFE), and T2 -weighted fluid-attenuated inversion recovery (FLAIR)-were acquired and co-registered to the CBCT. The same sequences were "compromised" by reconstructing without geometric distortion correction and re-collecting with lower signal-to-noise-ratio (SNR) to simulate a novel MRI sequence with poor co-registration accuracy. Image similarity metrics-structural similarity (SSIM) index, mean squared error (MSE), and peak SNR (PSNR)-were used to quantitatively compare the co-registration of the optimized and compromised MR images. RESULTS: The ground truth fiducial positions were compared to positions measured from each optimized image volume revealing a maximum median geometric uncertainty of 0.39 mm (LR), 0.92 mm (AP), and 0.13 mm (SI) between the CT and CBCT, 0.60 mm (LR), 0.36 mm (AP), and 0.07 mm (SI) between the CT and T1 -weighted Dixon, 0.42 mm (LR), 0.23 mm (AP), and 0.08 mm (SI) between the CT and T1 -weighted FFE, and 0.45 mm (LR), 0.19 mm (AP), and 1.04 mm (SI) between the CT and T2 -weighted FLAIR. Qualitatively, pairs of optimized and compromised image slices were compared using a fusion image where separable colors were used to differentiate between images. Quantitatively, MSE was the most predictive and SSIM the second most predictive metric for evaluating co-registration similarity. A clinically relevant threshold of MSE, SSIM, and/or PSNR may be defined beyond which point an MRI sequence should be rejected for target delineation based on its dissimilarity to an optimized sequence co-registration. All dissimilarity thresholds calculated using correlation coefficients with in-plane geometric uncertainty would need to be defined on a sequence-by-sequence basis and validated with patient data. CONCLUSION: This study utilized a realistic skull phantom and image similarity metrics to develop a methodology capable of quantitatively assessing whether a modern research-based MRI sequence can be co-registered to the Gamma Knife CBCT with equal or less than equal accuracy when compared to a clinically accepted protocol.


Assuntos
Radiocirurgia , Humanos , Crânio
8.
Radiother Oncol ; 164: 155-162, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592363

RESUMO

BACKGROUND AND PURPOSE: MRI linear accelerators (MR-Linacs) may allow treatment adaptation to be guided by quantitative MRI including diffusion-weighted imaging (DWI). The aim of this study was to evaluate the accuracy and precision of apparent diffusion coefficient (ADC) measurements from DWI on a 1.5 T MR-Linac in patients with central nervous system (CNS) tumours through comparison with a diagnostic scanner. MATERIALS AND METHODS: CNS patients were treated using a 1.5 T Elekta Unity MR-Linac. DWI was acquired during MR-Linac treatment and on a Philips Ingenia 1.5 T. The agreement between the two scanners on median ADC over the gross tumour/clinical target volumes (GTV/CTV) and in brain regions (white/grey matter, cerebrospinal fluid (CSF)) was computed. Repeated scans were used to estimate ADC repeatability. Daily changes in ADC over the GTV of high-grade gliomas were characterized from MR-Linac scans. RESULTS: DWI from 59 patients was analyzed. MR-Linac ADC measurements showed a small bias relative to Ingenia measurements in white matter, grey matter, GTV, and CTV (bias: -0.05 ± 0.03, -0.08 ± 0.05, -0.1 ± 0.1, -0.08 ± 0.07 µm2/ms). ADC differed substantially in CSF (bias: -0.5 ± 0.3 µm2/ms). The repeatability of MR-Linac ADC over white/grey matter was similar to previous reports (coefficients of variation for median ADC: 1.4%/1.8%). MR-Linac ADC changes in the GTV were detectable. CONCLUSIONS: It is possible to obtain ADC measurements in the brain on a 1.5 T MR-Linac that are comparable to those of diagnostic-quality scanners. This technical validation study adds to the foundation for future studies that will correlate brain tumour ADC with clinical outcomes.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Aceleradores de Partículas
9.
NMR Biomed ; 34(12): e4599, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34405471

RESUMO

Elevated production of lactate is a key characteristic of aberrant tumour cell metabolism and can be non-invasively measured as an early marker of tumour response using deuterium (2 H) MRS. Following treatment, changes in the 2 H-labelled lactate signal could identify tumour cell death or impaired metabolic function, which precede morphological changes conventionally used to assess tumour response. In this work, the association between apoptotic cell death, extracellular lactate concentration, and early treatment-induced changes in the 2 H-labelled lactate signal was established in an in vitro tumour model. Experiments were conducted at 7 T on acute myeloid leukaemia (AML) cells, which had been treated with 10 µg/mL of the chemotherapeutic agent cisplatin. At 24 and 48 h after cisplatin treatment the cells were supplied with 20 mM of [6,6'-2 H2 ]glucose and scanned over 2 h using a two-dimensional 2 H MR spectroscopic imaging sequence. The resulting signals from 2 H-labelled glucose, lactate, and water were quantified using a spectral fitting algorithm implemented on the Oxford Spectroscopy Analysis MATLAB toolbox. After scanning, the cells were processed for histological stains (terminal deoxynucleotidyl transferase UTP nick end labelling and haematoxylin and eosin) to assess apoptotic area fraction and cell morphology respectively, while a colorimetric assay was used to measure extracellular lactate concentrations in the supernatant. Significantly lower levels of 2 H-labelled lactate were observed in the 48 h treated cells compared with the untreated and 24 h treated cells, and these changes were significantly correlated with an increase in apoptotic fraction and a decrease in extracellular lactate. By establishing the biological processes associated with treatment-induced changes in the 2 H-labelled lactate signal, these findings suggest that 2 H MRS of lactate may be valuable in evaluating early tumour response.


Assuntos
Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Deutério , Glucose/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico
10.
Radiother Oncol ; 162: 140-149, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280403

RESUMO

PURPOSE: To describe the implementation and initial results of using Chemical Exchange Saturation Transfer (CEST) for monitoring patients with central nervous system (CNS) tumours treated using a 1.5 tesla MR-guided radiotherapy system. METHODS: CNS patients were treated with up to 30 fractions (total dose up to 60 Gy) using a 1.5 T Elekta Unity MR-Linac. CEST scans were obtained in 54 subjects at one or more time points during treatment. CEST metrics, including the amide magnetization transfer ratio (MTRAmide), nuclear Overhauser effect (NOE) MTR (MTRNOE) and asymmetry, were quantified in phantoms and CNS patients. The signal was investigated between tumour and white matter, across time, and across disease categories including high- and low-grade tumours. RESULTS: The gross tumour volume (GTV) exhibited lower MTRAmide and MTRNOE and higher asymmetry compared to contralateral normal appearing white matter. Signal changes in the GTV during fractionated radiotherapy were observed. There were differences between high- and low-grade tumours, with higher CEST asymmetry associated with higher grade disease. CONCLUSION: CEST MRI using a 1.5 T MR-Linac was demonstrated to be feasible for in vivo imaging of CNS tumours. CEST images showed tumour/white-matter contrast, temporal CEST signal changes, and associations with tumour grade. These results show promise for the eventual goal of using metabolic imaging to inform the design of adaptive radiotherapy protocols.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Substância Branca , Encéfalo , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/radioterapia , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
11.
NMR Biomed ; 34(7): e4532, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963784

RESUMO

Hyperpolarized (HP) [1-13 C]lactate is an attractive alternative to [1-13 C]pyruvate as a substrate to investigate cardiac metabolism in vivo: it can be administered safely at a higher dose and can be polarized to a degree similar to pyruvate via dynamic nuclear polarization. While 13 C cardiac experiments using HP lactate have been performed in small animal models, they have not been demonstrated in large animal models or humans. Utilizing the same hardware and data acquisition methods as the first human HP 13 C cardiac study, 13 C metabolic images were acquired following injections of HP [1-13 C]lactate in porcine hearts. Data were also acquired using HP [1-13 C]pyruvate for comparison. The 13 C bicarbonate signal was localized to the myocardium and had a similar appearance with both substrates for all animals. No 13 C pyruvate signal was detected in the experiments following injection of HP 13 C lactate. The signal-to-noise ratio (SNR) of injected lactate was 88 ± 4% of the SNR of injected pyruvate, and the SNR of bicarbonate in the experiments using lactate as the substrate was 52 ± 19% of the SNR in the experiments using pyruvate as the substrate. The lower SNR was likely due to the shorter T1 of [1-13 C]lactate as compared with [1-13 C]pyruvate and the additional enzyme-catalyzed metabolic conversion step before the 13 C nuclei from [1-13 C]lactate were detected as 13 C bicarbonate. While challenges remain, the potential of HP lactate as a substrate for clinical metabolic imaging of human heart has been demonstrated.


Assuntos
Isótopos de Carbono/metabolismo , Coração/diagnóstico por imagem , Ácido Láctico/metabolismo , Animais , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Especificidade por Substrato , Suínos , Fatores de Tempo
12.
Radiat Oncol ; 16(1): 71, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849576

RESUMO

BACKGROUND: Clinical target volume (CTV) contouring guidelines are frequently developed through studies in which experts contour the CTV for a representative set of cases for a given treatment site and the consensus CTVs are analyzed to generate margin recommendations. Measures of interobserver variability are used to quantify agreement between experts. In cases where an isotropic margin is not appropriate, however, there is no standard method to compute margins in specified directions that represent possible routes of tumor spread. Moreover, interobserver variability metrics are often measures of volume overlap that do not account for the dependence of disagreement on direction. To aid in the development of consensus contouring guidelines, this study demonstrates a novel method of quantifying CTV margins and interobserver variability in clinician-specified directions. METHODS: The proposed algorithm was applied to 11 cases of non-spine bone metastases to compute the consensus CTV margin in each direction of intraosseous and extraosseous disease. The median over all cases for each route of spread yielded the recommended margins. The disagreement between experts on the CTV margin was quantified by computing the median of the coefficients of variation for intraosseous and extraosseous margins. RESULTS: The recommended intraosseous and extraosseous margins were 7.0 mm and 8.0 mm, respectively. The median coefficient of variation quantifying the margin disagreement between experts was 0.59 and 0.48 for intraosseous and extraosseous disease. CONCLUSIONS: The proposed algorithm permits the generation of margin recommendations in relation to adjacent anatomy and quantifies interobserver variability in specified directions. This method can be applied to future consensus CTV contouring studies.


Assuntos
Margens de Excisão , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Osso e Ossos/patologia , Consenso , Humanos , Informática Médica , Metástase Neoplásica , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Software
13.
Data Brief ; 35: 106950, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33850982

RESUMO

Patients undergoing standard chemoradiation post-resection had MRIs at radiation planning and fractions 10 and 20 of chemoradiation. MRIs were 1.5T and 3D T2-FLAIR, pre- and post-contrast 3D T1-weighted (T1) and echo planar DWI with three b-values (0, 500, and 1000s/mm2) were acquired. T2-FLAIR was coregistered to T1C images. Non-overlapping T1 contrast-enhancing (T1C) and nonenhancing T2-FLAIR hyperintense regions were segmented, with necrotic/cystic regions, the surgical cavity, and large vessels excluded. The simplified IVIM model was used to calculate voxelwise diffusion coefficient (D) and perfusion fraction (f) maps; ADC was calculated using the natural logarithm of b = 1000 over b = 0 images. T1C and T2-FLAIR segmentations were brought into this space, and medians calculated. MGMT promoter methylation status (MGMTPMS), age at diagnosis, and Eastern Cooperative Oncology Group (ECOG) performance status were extracted from electronic medical records. The data were presented, analyzed, and described in the article, "Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype Glioblastoma", published in Radiotherapy and Oncology [1].

14.
Radiother Oncol ; 156: 258-265, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33418005

RESUMO

BACKGROUND: Prediction of early progression in glioblastoma may provide an opportunity to personalize treatment. Simplified intravoxel incoherent motion (IVIM) MRI offers quantitative estimates of diffusion and perfusion metrics. We investigated whether these metrics, during chemoradiation, could predict treatment outcome. METHODS: 38 patients with newly diagnosed IDH-wildtype glioblastoma undergoing 6-week/30-fraction chemoradiation had standardized post-operative MRIs at baseline (radiation planning), and at the 10th and 20th fractions. Non-overlapping T1-enhancing (T1C) and non-enhancing T2-FLAIR hyperintense regions were independently segmented. Apparent diffusion coefficient (ADCT1C, ADCT2-FLAIR) and perfusion fraction (fT1C, fT2-FLAIR) maps were generated with simplified IVIM modelling. Parameters associated with progression before or after 6.9 months (early vs late progression, respectively), overall survival (OS) and progression-free survival (PFS) were investigated. RESULTS: Higher ADCT2-FLAIR at baseline [Odds Ratio (OR) = 1.06, 95% CI 1.01-1.15, p = 0.025], lower fT2-FLAIR at fraction 10 (OR = 2.11, 95% CI 1.04-4.27, p = 0.018), and lack of increase in ADCT2-FLAIR at fraction 20 compared to baseline (OR = 1.12, 95% CI 1.02-1.22, p = 0.02) were associated with early progression. Combining ADCT2-FLAIR at baseline, fT2-FLAIR at fraction 10, ECOG and MGMT promoter methylation status significantly improved AUC to 90.3% compared to a model with only ECOG and MGMT promoter methylation status (p = 0.001). Using multivariable analysis, neither IVIM metrics were associated with OS but higher fT2-FLAIR at fraction 10 (HR = 0.72, 95% CI 0.56-0.95, p = 0.018) was associated with longer PFS. CONCLUSION: ADCT2-FLAIR at baseline, its lack of increase from baseline to fraction 20, or fT2-FLAIR at fraction 10 significantly predicted early progression. fT2-FLAIR at fraction 10 was associated with PFS.


Assuntos
Glioblastoma , Quimiorradioterapia , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética , Movimento (Física)
15.
Int J Radiat Oncol Biol Phys ; 109(3): 736-746, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068687

RESUMO

PURPOSE: Magnetic resonance image (MRI) guided radiation therapy has the potential to improve outcomes for glioblastoma by adapting to tumor changes during radiation therapy. This study quantifies interfraction dynamics (tumor size, position, and geometry) based on sequential magnetic resonance imaging scans obtained during standard 6-week chemoradiation. METHODS AND MATERIALS: Sixty-one patients were prospectively imaged with gadolinium-enhanced T1 (T1c) and T2/FLAIR axial sequences at planning (Fx0), fraction 10 (Fx10), fraction 20 (Fx20), and 1 month after the final fraction of chemoradiation therapy (P1M). Gross tumor volumes (GTVs) and clinical target volumes (CTVs) were contoured at all time points. Target dynamics were quantified by absolute volume (V), volume relative to Fx0 (Vrel), and the migration distance (dmigrate; the linear displacement of the GTV or CTV relative to Fx0). Temporal changes were assessed using a linear mixed-effects model. RESULTS: Median volumes at Fx0, Fx10, Fx20, and P1M for the GTV were 18.4 cm3 (range, 1.1-110.5 cm3), 14.7 cm3 (range, 0.9-115.1 cm3), 13.7 cm3 (range, 0.6-174.2 cm3), and 13.0 cm3 (range, 0.9-76.3 cm3), respectively, with corresponding median Vrel of 0.88 at Fx10, 0.77 at Fx20, and 0.71 at P1M relative to Fx0 (P < .001 for all). The GTV (CTV) migration distances were greater than 5 mm in 46% (54%) of patients at Fx10, 50% (58%) of patients at Fx20, and 52% (57%) of patients at P1M. Dynamic tumor morphologic changes were observed, with 40% of patients exhibiting a decreased GTV (Vrel ≤1) with a dmigrate >5 mm during chemoradiation therapy. CONCLUSIONS: Clinically meaningful tumor dynamics were observed during chemoradiation therapy for glioblastoma, supporting evaluation of daily MRI guided radiation therapy and treatment plan adaptation.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Quimiorradioterapia/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/patologia , Fracionamento da Dose de Radiação , Feminino , Gadolínio , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Radioterapia Guiada por Imagem/métodos , Carga Tumoral/efeitos da radiação , Adulto Jovem
16.
J Neurooncol ; 151(2): 267-278, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33196965

RESUMO

PURPOSE: Quantitative MRI (qMRI) was performed using a 1.5T protocol that includes a novel chemical exchange saturation transfer/magnetization transfer (CEST/MT) approach. The purpose of this prospective study was to determine if qMRI metrics at baseline, at the 10th and 20th fraction during a 30 fraction/6 week standard chemoradiation (CRT) schedule, and at 1 month following treatment could be an early indicator of response for glioblastoma (GBM). METHODS: The study included 51 newly diagnosed GBM patients. Four regions-of-interest (ROI) were analyzed: (i) the radiation defined clinical target volume (CTV), (ii) radiation defined gross tumor volume (GTV), (iii) enhancing-tumor regions, and (iv) FLAIR-hyperintense regions. Quantitative CEST, MT, T1 and T2 parameters were compared between those patients progressing within 6.9 months (early), and those progressing after CRT (late), using mixed modelling. Exploratory predictive modelling was performed to identify significant predictors of early progression using a multivariable LASSO model. RESULTS: Results were dependent on the specific tumor ROI analyzed and the imaging time point. The baseline CEST asymmetry within the CTV was significantly higher in the early progression cohort. Other significant predictors included the T2 of the MT pools (for semi-solid at fraction 20 and water at 1 month after CRT), the exchange rate (at fraction 20) and the MGMT methylation status. CONCLUSIONS: We observe the potential for multiparametric qMRI, including a novel pulsed CEST/MT approach, to show potential in distinguishing early from late progression GBM cohorts. Ultimately, the goal is to personalize therapeutic decisions and treatment adaptation based on non-invasive imaging-based biomarkers.


Assuntos
Neoplasias Encefálicas/patologia , Quimiorradioterapia/métodos , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/terapia , Feminino , Seguimentos , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Curva ROC , Adulto Jovem
17.
Circ Res ; 126(6): 725-736, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32078413

RESUMO

RATIONALE: The recent development of hyperpolarized 13C magnetic resonance spectroscopy has made it possible to measure cellular metabolism in vivo, in real time. OBJECTIVE: By comparing participants with and without type 2 diabetes mellitus (T2DM), we report the first case-control study to use this technique to record changes in cardiac metabolism in the healthy and diseased human heart. METHODS AND RESULTS: Thirteen people with T2DM (glycated hemoglobin, 6.9±1.0%) and 12 age-matched healthy controls underwent assessment of cardiac systolic and diastolic function, myocardial energetics (31P-magnetic resonance spectroscopy), and lipid content (1H-magnetic resonance spectroscopy) in the fasted state. In a subset (5 T2DM, 5 control), hyperpolarized [1-13C]pyruvate magnetic resonance spectra were also acquired and in 5 of these participants (3 T2DM, 2 controls), this was successfully repeated 45 minutes after a 75 g oral glucose challenge. Downstream metabolism of [1-13C]pyruvate via PDH (pyruvate dehydrogenase, [13C]bicarbonate), lactate dehydrogenase ([1-13C]lactate), and alanine transaminase ([1-13C]alanine) was assessed. Metabolic flux through cardiac PDH was significantly reduced in the people with T2DM (Fasted: 0.0084±0.0067 [Control] versus 0.0016±0.0014 [T2DM], Fed: 0.0184±0.0109 versus 0.0053±0.0041; P=0.013). In addition, a significant increase in metabolic flux through PDH was observed after the oral glucose challenge (P<0.001). As is characteristic of diabetes mellitus, impaired myocardial energetics, myocardial lipid content, and diastolic function were also demonstrated in the wider study cohort. CONCLUSIONS: This work represents the first demonstration of the ability of hyperpolarized 13C magnetic resonance spectroscopy to noninvasively assess physiological and pathological changes in cardiac metabolism in the human heart. In doing so, we highlight the potential of the technique to detect and quantify metabolic alterations in the setting of cardiovascular disease.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Miocárdio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Alanina Transaminase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Jejum/metabolismo , Feminino , Glucose/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo
18.
Magn Reson Med ; 82(5): 1684-1699, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31228291

RESUMO

PURPOSE: To compare magnetization transfer (MT) and CEST effects between 1.5T and 3T in phantom and in vivo experiments. METHODS: A pulsed saturation scheme using block-shaped pulses separated by gaps was used to overcome the single RF amplifier duty cycle limitations of a clinical 1.5T scanner. Modeling was performed by incorporating the extended phase graph formalism into a Bloch-McConnell simulation. Two saturation pulse types (with long and short pulses) were used. Estimated parameters for MT (the semi-solid pool fraction, M0B ; the semi-solid transverse relaxation time, T2B ) and CEST (asymmetry; areas) were compared between 1.5T and 3T in phantoms and in the healthy brain. RESULTS: Improved fits were shown after inclusion of extended phase graphs. Semi-solid pool fractions in phantom (for agar with ammonium chloride) were higher for short compared to long pulses at 3T (by 19% over all concentrations) and higher at 1.5T compared to 3T (by 5%) using short pulses. In the in vivo experiments, differentiation of white and gray matter was seen in the brain at both field strengths with improved white-gray matter contrast at 3T. In white matter, the mean semi-solid fractions were 18 ± 2% at 3T and 15 ± 2% at 1.5T. The CEST asymmetry in white matter was negative (-4.9 ± 0.4%) at 3T and zero (0.0 ± 0.3%) at 1.5T. CONCLUSIONS: The pulsed saturation method with short pulses, using the extended phase graph formalism in the Bloch McConnell simulations, led to improved model fits to the data, when compared to those without extended phase graphs.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
19.
Magn Reson Med ; 81(1): 466-476, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058296

RESUMO

PURPOSE: Prostate cancer can be detected using a multicomponent T2 mapping technique termed luminal water imaging. The purpose of this study is twofold: 1) To accelerate the luminal water imaging acquisition by using inner volume selection as part of a gradient and spin echo sequence, and 2) to evaluate the accuracy of luminal water fractions and multicomponent T2 relaxation times. METHODS: The accuracy of parameter estimates was assessed using Monte Carlo simulations, in phantom experiments and in the prostate (in 5 healthy subjects). Two fitting methods, nonnegative least squares and biexponential fitting with stimulated echo correction, were compared. RESULTS: Results demonstrate that inner volume selection in a gradient and spin echo sequence is effective for accelerating prostate luminal water imaging by at least threefold. Evaluation of the accuracy shows that the estimated luminal water fractions are relatively accurate, but the short- and long-T2 relaxation times should be interpreted with caution in noisy scenarios (SNR < 100) and when the corresponding fractions are small ( < 0.5). The mean luminal water fractions obtained at SNR above 100 are 0.27 ± 0.07 for the peripheral zone for both fitting methods, 0.16 ± 0.04 for the transition zone with nonnegative least squares, and 0.16 ± 0.03 for the transition zone with biexponential fitting including stimulated echo correction. CONCLUSION: The shortened scan duration allows the luminal water imaging sequence to be easily integrated into a standard multiparametric prostate MRI protocol.


Assuntos
Imageamento por Ressonância Magnética , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Algoritmos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Imagens de Fantasmas , Hiperplasia Prostática/diagnóstico por imagem , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Água/química
20.
Sci Rep ; 8(1): 15082, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305655

RESUMO

Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-13C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-13C]pyruvate and ethyl-[1-13C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-13C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-13C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the in vivo porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.


Assuntos
Barreira Hematoencefálica/metabolismo , Isótopos de Carbono/metabolismo , Imageamento por Ressonância Magnética , Ácido Pirúvico/metabolismo , Animais , Transporte Biológico , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Feminino , Humanos , Cinética , Manitol/administração & dosagem , Manitol/farmacologia , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...